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ABSTRACT

ORMATION of perched groundwater mounds was

analyzed through numerical analysis of coupled
saturated-unsaturated soil water flow. The unsteady
soil water flow equation was solved by the Alternating
Direction Implicit (ADI) numerical technique with iter-
ation to remove the nonlinearity. In the numerical model,
hydraulic conductivities, recharge rates, and flow do-
main geometery were varied to observe the important
parameters affecting the formation of perched water
table. The rate of formation of perched water tables de-
pended primarily on the recharge rate and the saturated
hydraulic conductivity of a semi-pervious, subsurface
layer. If the ratio of the recharge rate to this hydraulic
conductivity was less than 10, a perching condition did
not exist. When the ratio ranged from 10 to 25, the
perching condition was weak. When the ratio was greater
than 25, the perching condition was strong.

INTRODUCTION

Semi-pervious soil strata are often a major constraint
to artificially recharging groundwater formations from
surface infiltration structures. Even in highly permeable
media, one or more thin layers can seriously reduce per-
colation of water through the soil profile. Groundwater
mounds that perch on semi-pervious layers can rise to
the soil surface and limit the infiltration rate. Recharge
rates are then determined primarily by the hydraulic
conductivity of a subsurface layer rather than by the in-
filtration rate at the soil surface.

Theoretical analyses and field investigations of perched
water tables beneath recharge structures are limited.
Marmion (1962) initiated the theoretical study of perched
mounds with a steady-state analysis that was verified
with a viscous-flow model. Steady flow occurred when
leakage through the semi-pervious stratum equaled the
recharge rate. Brock (1976) developed a numerical,
Dupuit-Forchheimer solution for unsteady perched
mounds. Agreement between the numerical results and
sand box model data was good, except when the mounds
were high and narrow. For mounds perched on a thick,
semi-pervious stratum, Khan et al. (1976) developed

Article was submitted for publication in June 1977; reviewed and
approved for publication by the Soil and Water Division of ASAE in
December 1977.

Contribution from the USDA-SEA, and the Water Science and
Engineering Dept., University of California at Davis, in cooperation
with The Texas Agricultural Experiment Station, Texas A&M
University.

The authors are: ARLAND D. SCHNEIDER, Agricultural Engineer,
USDA Southwestern Great Plains Research Center, Bushland, TX;
JAMES N. LUTHIN, Professor, Water Science and Engineering Dept.,
University of California, Davis.

FELLOW
ASAE
e S oL — — -
= w
H ‘
t bty Soil Surface 2z N
i i
~ 3 K3
53 N
e 5
5 . : |
At b 4 T
S —
ER 7 -3
K, | -8
z“ % 5 }
- :
LB -1
* Impermeable Boundary aa_': - 0)'

FIG. 1 Flow domain for a three-layered soil-aquifer system.

the potential and stream functions for two-dimensional
and axisymmetric three-dimensional flow. The solution is
more rigorous than Dupuit-Forchheimer theory, but the
thick perching layer often does not represent field condi-
tions. The analyses that are applicable to thin perching
layers use the Dupuit-Forchheimer assumptions and do
not consider unsaturated flow.

The objective of this research was to predict the form-
ation of perched groundwater mounds through numer-
ical analysis of coupled saturated-unsaturated soil water
flow. The soil and underlying aquifer were modeled as
a single flow domain with continuous flow from the un-
saturated zone to the saturated zone.

MATHEMATICAL MODEL

The problem is to describe water flow through a three-
layered soil-aquifer system, in which the hydraulic con-
ductivity of the thin, center layer is low enough to form
a perched water table (Fig. 1). Steady recharge at a rate,
R, occurrs from a basin of width 2 W. Flow is symmetri-
cal about the basin center so only half the flow domain
must be considered. Since the basin length is much
greater than the width, flow is two-dimensional. The
percolating water perches above layer 2, leaks through
the slowly permeable layer and forms a second ground-
water mound at the original water table. The hydraulic
gradient caused by the percolating water causes
saturated and unsaturated flow to a vertical discharge
surface referred to as the lateral control. The height of
the perched mound decreases to zero above layer 2, and
the height of the groundwater mound must be zero at
x = L.

Boundary conditions for the flow problem are illus-
trated in Fig. 1. The line of symmetry and the imper-
meable boundary are streamlines so the gradient across
these boundaries is zero. Along the soil surface the flux
is R for x €W and zero for x > W. The distant boundary
has a constant hydraulic head, zj, so flow may occur
in both the saturated and unsaturated zones. The initial
condition for the model was drainage to equilibrium,
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when the unsaturated thickness was 100 cm or less or
drainage to a minimum negative pressure head when
the unsaturated thickness was greater than 100 cm.
Since the formation of groundwater mounds includes
only soil wetting, hysteresis was not considered. The
equations proposed by Gardner (1958) were used to
uniquely relate the hydraulic conductiviey and soil water
content to the negative pressure head of the soil:

where
K = hydraulic conductivity
Ko = saturated hydraulic conductivity
8 = soil water content
8, = saturated soil water content
h = negative soil water pressure head

and Ak and Ay are coefficients relating the hydraulic
conductivity and soil water content to the negative soil
water pressure head.

The partial differential equation describing soil water
flow in two dimensions is:
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where x and z are the spatial variables, t is the time vari-
able,and H = p/y +z=h + z.

Equation [3] is complicated by the presence of two de-

pendent variables. The chain rule of partial derivatives
can be used to transform the time derivative:
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The term, a6/on, is the specific water capacity, C, and

oh/oH = 1.

Specific water capacity is obtained by differentiating
equation [2]:

= -3 Ayfoh®
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After transforming the time derivative and adding
a source term, the soil water flow equation becomes:
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where Q is the source per unit area per unit time within
the flow domain.

Equation [6] is a strongly-nonlinear, parabolic partial
differential equation with no known analytic solution.
The equation was solved by the Alternating Direction Im-
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plicit (ADI) technique with iteration to remove the non-
linearity.

The ADI method proposed by Peaceman and Rachford
(1955) and by Douglas and Peaceman (1955) employs
two finite difference equations over time steps of At/2.
The first equation is implicit only in one direction, and
the second equation is implicit only in the opposite dir-
ection. Each row or each column in the grid is swept to
compute an intermediate solution at the n + 1/2 time
step. The grid is then swept in the opposite direction
to compute the true solution at the n + 1 time step. The
unknowns in each difference equation are limited to
three; thus, each system of equations can be efficiently
solved by the recursive form of Gaussian elimination.

For iterative solution of nonlinear partial differential
equations Rubin (1968) modified the ADI equations to
advance the solution a full time step for sweeping in each
direction. His first ADI equation uses known values to
approximate the solution at the end of a full time step.
The second ADI equation uses the approximated values
to improve the solution at the end of the full time step.
Taylor (1974) recommended the Rubin version of the
ADI method because it generally requires fewer itera-
tions in the solution of nonlinear equations. When
Rubin’s equation is applied to equation [6], the ADI
equations for sweeping in the z and x directions, respect-
ively, are:
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where i, j, and n are the indices in the x, z, and t direc-
tions, respectively, and m is an iteration index.

An iteration parameter is required in equations [7]
and [8] to insure convergence and reduce the number of
iterations. The iteration parameter proposed by Douglas
et al. (1959) and modified for the soil water flow equation
by Rubin (1968) was used in this research. It is defined

as Iy, = RP where I, varies cyclically with the iteration
cycles. The range of R'is 0.20 <R <0.35, and p = 1,
2,..., S with S varying from 4 to 6. Values of R and S~

are selected by trial and error to achieve the fastest con-
vergence. To use the iteration parameter, the terms
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are added to the right side of equations [7] and (8], res-
pectively. The value of Ky, is:
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pervious layer. The hydraulic conductivity of the capil-
lary fringe was many times as large as the initial hydrau-
lic conductivity of the drained soil. In some simulations,
horizontal flow in the unsaturated zone accounted for 15
to 25 percent of infiltration from the recharge basin.
For this reason, maximum heights of the perched mounds
were not accurately predicted.

DISCUSSION

The R/K, ratios are guidelines for selecting surface
water spreading sites for groundwater recharge. Since K,
is a saturated hydraulic conductivity, it can be obtained
through field measurements or by core measurements.
The surface infiltration rate can be obtained with surface
infiltration measurement techniques.

A large reduction in hydraulic conductivity is required
to develop the R/K, > 10 condition for the formation of
perched groundwater mounds. For a perching condi-
tion to develop, the surface soil will normally be 50 or
more times as permeable as the semi-pervious layer.
Such large variations in the hydraulic conductivity
could be detected with geologic logging or permeability
measurements of cores. Both techniques are commonly
used to select groundwater recharge spreading areas.
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In the development of equations [7] and [8], the time
derivative of equation [6] was replaced by a forward
difference approximation. Finite differencing of the
spatial derivatives gives the ADI finite difference equa-
tions for sweeping in the z and x directions, respectively:

RESULTS

Formation of groundwater mounds above the semi-
pervious layer and at the water table is illustrated by
the two groups of nested curves in Fig. 2. A perched
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The new symbols in equations [9] and [10] are:
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Schneider (1976) presented a detailed derivation of the
Rubin version of the ADI equations for solving equation
[6].

The numerical model was verified with the sand box
model data and the numerical Dupuit-Forchheimer sol-
ution of Brock (1976). Agreement between the numerical
model and the Dupuit-Forchheimer solution was good
(Schneider, p. 73, 1976). Brock considered his solution
accurate, except for thick mounds with large vertical
flow components. Both the numerical model and Brock’s
numerical solution consistently underestimated the sand
box measurements. We believe the horizontal unsatura-
ted flow in the numerical model was too large and this
caused the model to underestimate the sand box meas-

urements.
In the numerical model, the recharge rate and hydrau-

lic conductivities were varied to provide a range of perch-
ing conditions. The selected hydraulic conductivities
gave K; < K; and K; >> K,. As a result a perched
groundwater mound was caused by a single slowly
permeable layer. The selected recharge rates gave 0.2 <
R/K;<0.4 and 10 <R/K; < 40. In the analyses to be re-
ported, L = 10W, and, T, the flow domain thickness
ranged from 140 to 800 cm.

i, + Ry Iy <H1n+1 ,2m+2 Hn+12m+1) Qn+1

groundwater mound will be refereed to as a ““perched
mound,” and the groundwater mound at the water table
will be referred to as the ‘‘groundwater mound.” Ini-
tially, the perched mound did not exist, and the water
table remained steady as water percolated through the
unsaturated soil.

The perched mound formed after 0.43 days of recharge
and rose rapidly as the semi-pervious layer limited ver-
tical soil water movement. After 0.56 days of recharge,
the perched mound was wide as the recharge basin, and
after 1.42 days, saturated flow was nearly continuous
between the recharge basin and the perched mound.
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FIG. 2 Formation of groundwater mounds with W = 40 cm and R =
40 cm/day.
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FIG. 3 Potential lines in a layered soil aquifer system as flow approached
steady state, W = 90 cm and R = 100 cm/day. The potential lines
are labeled as total head in centimeters.

When leakage through the semi-pervious layer ap-
proached the mass recharge rate from the basin, the
perched mound slowly approached steady state.

The dominant influence of the semi-pervious layer
on soil water flow is illustrated by the potential lines in
Fig. 3. Flow is approaching steady state, and positions
of the perched mound and the groundwater mound are
sketched. For the perched mound, transition from verti-
cal to essentially horizontal flow occurs within a distance
2W of the basin center. Soil water flow beneath the re-
charge basin is mainly vertical, but at the basin edge,
the horizontal components is greater than the vertical
component. Closely spaced potential lines within the
semi-pervious layer show the large head loss across the
perching layer. Since flow is approaching steady state,
leakage through the semi-pervious layer is essentially
equal to the mass recharge rate from the basin. A second
transition from vertical to horizontal flow occurs beneath
the semi-pervious layer. Dashed, supplementary poten-
tial lines beneath the water table show a low gradient
zone typical of deep groundwater formations.

The rate of formation of a perched mound and a
groundwater mound is illustrated in Fig. 4 for the soil-
water flow parameters shown in the same figure. The
perching condition was not strong, and both mounds
grew at about the same rate. The perched mound reached
quasi-steady state at 3.3 days, while the groundwater
mound was still rising. The rate of formation of perched
mounds depended primarily on the recharge rate and
the hydraulic conductivity of the semi-pervious layer.
The two parameters were combined by calculating R/K,,
the ratio of the recharge rate to the saturated hydraulic
conductivity of the semi-pervious layer.

The time after recharge began at the soil surface for a
perched mound to form is plotted in Fig. S as a function
of R/K,. Flow domain geometry was similar for all data
points in the figure. Both the recharge rate and the hy-
draulic conductivity ratio, K;/K,, varied, while obtaining
the range of R/K,. The linear relationship between the
two parameters shows the importance of R/K; in deter-
mining the conditions for perched mounds.

Three conditions for perched water tables were ob-
served depending on the R/K, ratio. For smaller values
of R/K,, a perched water table did not form. Larger
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FIG. 4 The rate of formation of a perched mound above the semi-
pervious layer and the underlying groundwater mound above the orig-
inal water table.

values of R/K, defined either weak or strong perching
conditions.

A perching condition did not exist for R/K, <10, and
a second water table never formed. The pressure head
at the top of the slowly-permeable layer increased to
small negative values, but flow never became saturated.

When R/K, ranged from 10 to 25, a weak perching
condition existed. The perched water table formed slowly
after the wetting front passed the semi-pervious layer.
When the groundwater mound began to form, the soil
profile beneath the recharge basin had been wetted to
small negative soil water pressures. If the unsaturated
zone was thin, the groundwater mound began to form
soon after the perched mound formed.

For R/K, > 25, a strong perching condition existed.
A perched water table formed rapidly after the wetting
front reached the semi-pervious layer. Perched mounds
also formed before appreciable flow occurred through
the semi-pervious layer. Thus, most flow through the
semi-pervious layer was in the saturated phase. Even
with thin flow domains, the perched mound formed be-
fore there was an appreciable rise of the groundwater
table. :

The model flow domains were small in comparison to
prototype groundwater recharge systems. As a result,
unsaturated flow was more important than in field size
flow systems. When a perched mound formed, a second
zone of nearly saturated soil occurred above the semi-

(Continued on page 930)
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FIG. 5 The effect of R/K, on the rate of
formation of a perched mound, L = 400 cm
and T = 140 cm.





